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Ketamine Rapidly Enhances Glutamate-Evoked
Dendritic Spinogenesis in Medial Prefrontal
Cortex Through Dopaminergic Mechanisms

Mingzheng Wu, Samuel Minkowicz, Vasin Dumrongprechachan, Pauline Hamilton, and
Yevgenia Kozorovitskiy
ABSTRACT
BACKGROUND: Ketamine elicits rapid onset antidepressant effects in patients with clinical depression through
mechanisms hypothesized to involve the genesis of neocortical dendritic spines and synapses. Yet, the observed
changes in dendritic spine morphology usually emerge well after ketamine clearance, raising questions about the link
between rapid behavioral effects of ketamine and plasticity.
METHODS: Here, we used two-photon glutamate uncaging/imaging to focally induce spinogenesis in the medial
prefrontal cortex, directly interrogating baseline and ketamine-associated plasticity of deep layer pyramidal
neurons in C57BL/6 mice. We combined pharmacological, genetic, optogenetic, and chemogenetic manipulations
to interrogate dopaminergic mechanisms underlying ketamine-induced rapid enhancement in evoked plasticity and
associated behavioral changes.
RESULTS: We found that ketamine rapidly enhances glutamate-evoked spinogenesis in the medial prefrontal cortex,
with timing that matches the onset of its behavioral efficacy and precedes changes in dendritic spine density.
Ketamine increases evoked cortical spinogenesis through dopamine Drd1 receptor (Drd1) activation that requires
dopamine release, compensating blunted plasticity in a learned helplessness paradigm. The enhancement in
evoked spinogenesis after Drd1 activation or ketamine treatment depends on postsynaptic protein kinase A
activity. Furthermore, ketamine’s behavioral effects are blocked by chemogenetic inhibition of dopamine release
and mimicked by activating presynaptic dopaminergic terminals or postsynaptic Gas-coupled cascades in the
medial prefrontal cortex.
CONCLUSIONS: Our findings highlight dopaminergic mediation of rapid enhancement in activity-dependent dendritic
spinogenesis and behavioral effects induced by ketamine.

https://doi.org/10.1016/j.biopsych.2020.12.022
Ketamine and its S-enantiomer esketamine demonstrate rapid
onset and lasting antidepressant effects in clinical studies (1,2);
esketamine (Spravato) was recently approved by the U.S. Food
and Drug Administration for treatment-resistant depression (3).
Ketamine acts primarily as an antagonist at the glutamatergic
NMDA receptors (4–8), although several studies implicate mecha-
nisms beyond direct NMDA receptor antagonism (9,10). Ketamine
has been shown to ameliorate depressive-like behaviors in animal
models of stress (11–15). Accumulating evidence implicates the
enhancement of synaptic plasticity in ketamine’s behavioral effects
(6,8,13,14,16–19). Several prior studies demonstrate that in vivo
administration of ketamine enhances dendritic spine density
(16,20–23) and restores dendritic spine loss in the medial prefrontal
cortex (mPFC) (19). Notably, increased dendritic spine density in
mPFC pyramidal neurons usually emerges 12 to 24 hours after a
single subanesthetic dose of ketamine (16,19,20,23), yet clinical
effects on behavior emerge within 2 to 4 hours (1,2,24). Even if
ketamine’s effects on plasticity are linked to its behavioral efficacy,
as has been suggested (16,19,21,23,25), this temporal mismatch
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could in principle result from a rapid enhancement of spinogenesis
by ketamine, which over time leads to increased dendritic spine
density. This possibility has not yet been directly examined.

Changes in hedonic, motivational, and aversive processing
represent fundamental features of major depressive disorders
(26–29). Reward, aversion, and motivational states are strongly
tied to changes in the activity of midbrain dopaminergic neu-
rons (30–35). In addition, dysregulation of dopamine (DA)
systems has been demonstrated in patients with clinical
depression (36,37) and in animal models of depression (38–41).
The reversal of deficits in the DA system usually improves
depressive-like behaviors (39,40,42). A recently published
meta-analysis suggests that subanesthetic doses of ketamine
increase DA levels in the PFC (43), reported for both in vivo and
ex vivo studies (44–48). Yet, little is known about the behavioral
and neurobiological consequences of elevated cortical dopa-
mine level induced by ketamine treatment. Outside the context
of ketamine effects on the brain, several studies have eluci-
dated DA modulation of intrinsic excitability and ion channel
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properties of mPFC pyramidal neurons (49–52). Whether DA
signaling regulates structural plasticity of dendritic spines in
the mPFC and whether changes in DA tone account for
ketamine-associated plasticity remain unknown.

Here, we relied on dual laser two-photon glutamate
uncaging and imaging to directly induce de novo dendritic
spinogenesis on mPFC pyramidal neurons. The spatiotem-
poral control of this assay enabled us to evaluate the capacity
for spinogenesis independently from preexisting dendritic
spines. Combining this assay with pharmacological, genetic,
and behavioral manipulations allowed us to functionally
dissect the underlying mechanism of changes in the
glutamate-evoked genesis of new dendritic spines.

METHODS AND MATERIALS

A detailed description of experimental procedures, including
mouse strains and genotyping, stereotactic injections and
optic fiber implants, behavior assays, local drug infusion, acute
slice preparation, pharmacology, tissue processing and
immunohistochemistry, and quantitative fluorescence in situ
hybridization, is provided in the Supplement.

Mouse Strains and Genotyping

Animals were handled according to protocols approved by the
Northwestern University Animal Care and Use Committee.
Weanling and young adult male and female mice (postnatal
days P25–P60) were used in this study. Approximately equal
numbers of male and female mice were used for every
experiment. All mice were group housed with standard
feeding, light/dark cycle, and enrichment procedures; litter-
mates were randomly assigned to conditions.

Behavior Assays: Learned Helplessness

P40–P60 mice were used for behavioral assays with opto-
genetic and chemogenetic experiments. P25–P40 mice were
used for spinogenesis assays with behavioral manipulations.
The learned helplessness (LH) procedure consisted of two in-
duction sessions (one session per day; 360 inescapable foot
shocks per session; 0.3 mA, 3 seconds; random 1- to 15-
second intershock intervals). Active/Passive Avoidance Shut-
tle Boxes from Maze Engineers (Boston, MA) were used for the
experiment. To assess the degree of aversive learning, test
sessions (30 escapable foot shocks per session; 0.3 mA, 10
seconds; random 5- to 30-second intershock intervals) were
conducted before induction, 24 hours after the last induction
session, and following pharmacological or optogenetic ma-
nipulations. The testing was performed in a shuttle box (18 3

18 3 20 cm) equipped with a grid floor and a door separating
the two compartments. No conditioned stimulus was delivered
either before or after the shocks. Escapes were scored when
the animal shuttled between compartments during the shock.
Escape latency was measured as the time from the start of the
shock to the escape. The shock automatically terminated
when the animal shuttled to the other compartment. Failures
were scored when the animal failed to escape before the shock
end. The weaker LH paradigm (wLH) consisted of one induc-
tion session and one test session with a larger number of brief
escapable shocks (100 escapable foot shocks per session; 0.3
mA, 3 seconds; random 5- to 15-second intershock intervals).
Biological Psy
All behavioral assays were conducted during the active phase
of the circadian cycle. Schematics involving mice were made
using BioRender software (BioRender, Toronto, Ontario,
Canada).

Two-Photon Imaging With Two-Photon Glutamate
Uncaging

Dendritic imaging and uncaging of MNI-glutamate for spino-
genesis induction were accomplished on a custom-built micro-
scope combining two-photon laser-scanning microscopy and
two-photon laser photoactivation, as previously described
(53–55). Two mode-locked Ti:Sapphire lasers (Mai Tai eHP and
Mai Tai eHP DeepSee; Spectra-Physics, Santa Clara, CA) were
tuned to 910 and 725 nm for exciting enhanced green fluores-
cent protein (EGFP) and uncaging MNI-glutamate, respectively.
The intensity of each laser was independently controlled by
Pockels cells (Conoptics, Danbury, CT). A modified version of
ScanImage software was used for data acquisition (56). For
glutamate uncaging, 2.5 mM MNI-caged-L-glutamate (Tocris
Bioscience, Bristol, UK) was perfused into the slice chamber,
and 725 nm light guided through a galvo scanhead was used to
focally release the caging group. Secondary and tertiary den-
dritic branches were selected for dendritic imaging and spino-
genesis induction. MNI-glutamate was uncaged near the
dendrite (w0.5 mm) at 2 Hz using up to 40 2-ms pulses. Images
were continually acquired during the induction protocol at 1 Hz,
and uncaging was stopped if a spinehead was visible before 40
uncaging pulses were delivered. Analysis was carried out on raw
image stacks and Z projections. For display purposes only, a
subset of the two-photon micrographs was processed using
Candle (57). A successful induction of new dendritic spine was
scored when a protrusion from the dendrite in the uncaging
location was observed. A newly generated dendritic spine
needed to satisfy the following criteria: de novo protrusion from
the dendrite within 1 mm of the uncaging site, mean spine head
fluorescence matching average fluorescence of spine heads on
the parent dendrite, and mean spine head fluorescence
exceeding 20% of intensity in the parent dendrite. Changes in
fluorescence intensity were profiled using line-scan analyses.
For each animal, the probability of spinogenesis is represented
as the fraction of successful induction trials out of all conducted
trials within the individual.

Quantification of Dendritic Spine Density

Sections of the mPFC were examined with either a custom-built
two-photon laser-scanning microscope or a Leica SP5 confocal
microscope (Leica Microsystems). Distal apical dendritic seg-
ments were selected for analysis. For each dendritic segment,
dendritic spines protruding on both sides of the dendrite were
marked using a 3D reconstruction system, Neurolucida 360
(MBF Bioscience, Williston, VT). A total of 6 to 8 Z stacks (0.3 mm
between each stack), at 0.07-mm lateral pixel size, were used for
reconstruction. Dendritic spine density was averaged from 8 to
12 dendritic segments for each animal.

Statistical Analyses

Group statistical analyses were done using GraphPad Prism 7
software (GraphPad, La Jolla, CA). For N sizes, the number of
trials and the number of animals are provided. All data are
chiatry June 1, 2021; 89:1096–1105 www.sobp.org/journal 1097
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expressed as mean6 SEM or individual plots. Probabilities are
expressed as aggregate probabilities within individuals. For
two-group comparisons, statistical significance was deter-
mined by two-tailed Student’s t tests. For multiple group
comparisons, one-way or two-way analysis of variance
(ANOVA) tests were used for normally distributed data, fol-
lowed by post hoc analyses. Pearson regression was used to
detect the correlation between two groups of data. p , .05
was considered statistically significant.

RESULTS

Ketamine Rapidly Enhances Glutamate-Evoked
Spinogenesis in mPFC Pyramidal Neurons

Acute slices of the mPFC were prepared from P25–P40 mice
of both sexes following neonatal transduction of sparse EGFP
expression accomplished by a combination of AAV1.hSyn.Cre
and AAV8.FLEX.EGFP. We imaged EGFP-labeled dendrites of
layer 5 pyramidal neurons in the mPFC using two-photon laser
scanning microscopy (910 nm). A second laser was tuned to
725 nm to locally uncage MNI-glutamate near dendrites to
probabilistically induce the formation of new dendritic spines
(Figure 1A), as previously described for developing neurons in
the striatum and superficial layers of the sensory and motor
cortex (53,55,58). Successful and unsuccessful induction trials
of de novo spinogenesis were distinguished in Z-stack pro-
jections through a dendritic segment before and after the brief
induction protocol (,30 seconds) of up to 40 uncaging pulses
(Figure 1B). To be classified as newly induced dendritic spines,
the new membrane protrusions needed to satisfy several
criteria based on location and fluorescence intensity relative to
parent dendrite and preexisting dendritic spines (Supplemental
Methods and Materials and Figure S1A–C).

We carried out evoked spinogenesis assays in different
mice at several time points (2–72 hours) after a single sub-
anesthetic dose of ketamine (10 mg/kg, intraperitoneal [i.p.]).
In vivo administration of ketamine in naïve animals enhanced
evoked de novo spinogenesis 2 and 4 hours after treatment
(Figure 1C), temporally matching the emergence of ketamine’s
behavioral effects (4,5). This effect was transient; by 12 hours
after ketamine was administered, the probability of spino-
genesis decreased back to baseline levels. In addition, den-
dritic spine density was quantified at the same time points. In
contrast to the rapid transient changes in evoked spino-
genesis, the increase in dendritic spine density was delayed
until 12 hours after treatment (Figure 1C), consistent with prior
reports (14,18–20). This temporal precedence of ketamine-
associated potentiation of evoked spinogenesis suggests
that changes in the potential for activity-dependent plasticity
may contribute to slower accumulating increases in spine
density after ketamine treatment.

Rapid Enhancement in Evoked Spinogenesis
Requires Drd1-Protein Kinase A Signaling

Given the hypothesized links between ketamine and the DA
system, we sought to determine whether ketamine’s effect on
evoked plasticity is mediated by the activation of DA receptors.
First, we verified the expression of Drd1s in EGFP-expressing
neurons. Consistent with prior reports (59,60), the majority of
1098 Biological Psychiatry June 1, 2021; 89:1096–1105 www.sobp.org
pyramidal neurons in the deep layers of the mPFC express
Drd1a messenger RNA (mRNA) (Figure 1D and Figure S2A, B).
We compared glutamate-evoked spinogenesis after adminis-
tering ketamine alone or in conjunction with a Drd1 antagonist,
SKF 83566 (10 mg/kg i.p., 2 hours prior to ex vivo experi-
ments). We found that antagonizing Drd1s blocked ketamine’s
potentiation of evoked spinogenesis, while the antagonist
treatment alone had no effect relative to baseline (Figure 1D).
Thus, while the activation of Drd1s in this neuronal population
is not required for baseline glutamate-evoked plasticity, it ap-
pears to be necessary for ketamine’s enhancement of evoked
spinogenesis.

Next, to suppress mPFC DA release without broadly altering
Drd1 activation and locomotor behavior (61), we used che-
mogenetic inhibition of ventral tegmental area (VTA) DA neu-
rons, the major source of DA in the mPFC. Inhibiting hM4Di1

VTA DA neurons with clozapine N-oxide (CNO) (3 mg/kg, i.p.)
while administering ketamine treatment blocked ketamine’s
spinogenesis-enhancing effects (Figure 1E). Yet, as for the
pharmacological Drd1 blockade in vivo, we observed no ef-
fects of CNO treatment on evoked spinogenesis in the
absence of ketamine. These observations are consistent with a
model where the genesis of new dendritic spines and synap-
ses mechanistically depends on glutamate, but the enhance-
ment of this plasticity requires the activation of protein kinase
A (PKA) via Gas-coupled receptors (55). In addition to blocking
ketamine-mediated enhancement of evoked spinogenesis,
transient inhibition of VTA DA neuron activity (a single CNO
dose 1 ketamine) also abolished the delayed increase of spine
density 24 hours after ketamine (Figure 1F). These data show
that in the absence of behavioral manipulations, Drd1 activa-
tion and VTA DA activity regulate changes in spinogenesis and
dendritic spine density, mediating the effects of ketamine on
plasticity in the mPFC.

The next series of experiments tested whether the ca-
pacity for spinogenesis is altered in animal models of stress,
where ketamine ameliorates behavior. We exposed mice to
subacute uncontrollable stress by administering foot shocks
over 2 days using an adapted model of LH (3 seconds
inescapable, 360 shocks each day) (Figure 2A). Following
repeated exposure to inescapable foot shocks, LH behavior
manifests in increased failures to escape from readily
avoidable shocks (10 seconds escapable, 30 trials total),
consistent with prior reports (38,62). A single dose of keta-
mine 4 hours prior to the test (10 mg/kg, i.p.) is sufficient to
rescue escape behavior in this paradigm (Figure 2B). We
next tested glutamate-evoked spinogenesis in the baseline,
after stress exposure (LH), and following ketamine treatment
(LH 1 ketamine). The probability of glutamate-evoked spi-
nogenesis decreased relative to baseline in LH mice, while
ketamine treatment restored the baseline potential for plas-
ticity (Figure 2C). We found that 2 days of stressful experi-
ence is sufficient to decrease the potential of spinogenesis
in mPFC pyramidal neurons, in contrast to changes in
dendritic spine density that normally manifest after chronic
stress (16,63,64). No significant sex difference was observed
across conditions despite a trend toward higher evoked
spinogenesis in female mice in the baseline condition
(Figure S3A, B). To correlate individual behavioral outcomes
with evoked plasticity, we performed de novo spinogenesis
/journal
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Figure 1. KET regulates mPFC plasticity through a DA-dependent mechanism. (A) Schematic illustrating glutamate-evoked de novo spinogenesis platform.
Top: viral transduction and an example EGFP1 pyramidal neuron in the mPFC. Bottom: MNI-glutamate uncaging parameters for the induction of new dendritic
spines. Scale bar = 50 mm. (B) Example two-photon laser-scanning microscopy images of successful and unsuccessful induction trials of de novo spino-
genesis. Red circles show uncaging sites. Black rectangles show close-up images of local dendritic segments before and after glutamate uncaging. Scale
bar = 2 mm. (C) Left: Schematic illustrating time course of KET treatments and experiments. Middle: Time course of evoked spinogenesis probability on deep
layer mPFC neurons in mice treated with either saline or KET (10 mg/kg, intraperitoneal, acute slice preparation 2–72 hours after treatment). Each small circle
shows aggregate probability of evoked spinogenesis from a single animal. Large circle shows group data. n = 6–7 animals/time point, 15–25 trials/animal, one-
way ANOVA, F5,35 = 9.895, p, .0001, Sidak’s multiple comparison test vs. saline, 2 hours, p = .0076, 4 hours, p, .0001, 12 hours, p = .0532, 24/72 hours, p.

.90. Right: Same as left but for dendritic spine density. n = 7–8 animals/time point, one-way ANOVA, F5,37 = 6.319, p = .0002, Sidak’s multiple comparison test
vs. saline, 2/4 hours, p . .80, 12 hours, p = .0056, 24 hours, p = .0011, 72 hours, p = .1271. Inset: Normalized time course of changes in evoked spinogenesis
(orange) and dendritic spine density (blue). (D) Left: Viral transduction and percentage of Drd1a1Egfp1/Egfp1 cells in layer 5 mPFC. Right: Probability of
glutamate-evoked spinogenesis on deep layer mPFC neurons in mice treated with saline, KET (10 mg/kg), KET 1 SKF 83566 (10 mg/kg), or SKF 83566 alone.
Each small circle shows aggregate probability of evoked spinogenesis from a single animal. Large circle shows group data. One-way ANOVA, p , .0001,
F3,16 = 20.29, Sidak’s multiple comparison test, saline vs. KET, p , .0001, KET vs. KET 1 SKF 83566, p = .0002, saline vs. SKF 83566, p = .8574. (E) Left:
Schematic illustrating triple viral transduction strategy for evoked spinogenesis with DA neuron inhibition. Right: Probability of spinogenesis on deep layer
mPFC neurons in DATiCre1 and DATiCre2 animals treated with CNO (3 mg/kg) across conditions (baseline and KET). n = 4 animals/condition as shown in plots,
two-way ANOVA, Sidak’s multiple comparison test, Cre2 vs. Cre1, CNO, p = .8686, CNO 1 KET, p = .0042. (F) Left: Example confocal images of EGFP
expression in dendrites of deep layer mPFC pyramidal neurons in response to CNO and KET treatment, as noted. Scale = 2 mm. Right: same as (E) but for
dendritic spine density. n = 5–6 animals/condition as shown in plots, two-way ANOVA, Sidak’s multiple comparison test, Cre2 vs. Cre1, CNO, p = .5005,
CNO 1 KET, p , .0001. Scale bar = 2 mm. **p , .01, ***p , .001, ****p , .0001. Error bars reflect SEM. ANOVA, analysis of variance; CNO, clozapine N-oxide;
DA, dopaminergic; EGFP, enhanced green fluorescent protein; FISH, fluorescence in situ hybridization; KET, ketamine; mPFC, medial prefrontal cortex; ns,
nonsignificant; t, time; VTA, ventral tegmental area.
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assays in animals trained with a modified wLH paradigm
with or without subsequent ketamine treatment. In the wLH
paradigm, we used a larger number of brief (3-second)
escapable foot shocks to evaluate the escape behavior
following a single day of LH induction with inescapable
shocks (Figure S3C). We found that the probability of
evoked spinogenesis negatively correlates with the per-
centages of failures to escape in both conditions (wLH 6
ketamine) (Figure S3D). This result suggests that mPFC
plasticity is linked to behavioral profiles of individual animals
after LH and ketamine treatment.

We then tested the contribution of Drd1s to ketamine-
related plasticity changes. To specifically manipulate Drd1
expression in the mPFC without affecting the global DA sys-
tem, we conditionally knocked out Drd1s by coexpressing Cre
recombinase and Cre-dependent EGFP in Drd1-floxed mice
(Figure 2D). We validated the conditional knockout by verifying
the expression of Drd1a mRNA in EGFP-expressing neurons
Biological Psy
(Figure 2D). Sparse genetic depletion of Drd1 in mPFC pyra-
midal neurons abolished ketamine’s effect on spinogenesis in
LH animals without changing the probability of spinogenesis
for mice in the baseline and LH conditions (Figure 2E).

Next, we addressed the downstream signaling mechanism
for DA enhancement of glutamate-evoked spinogenesis. Drd1
activation is known to regulate glutamatergic synapse and
dendritic spine formation in the developing striatum (55,65).
Yet, mPFC Drd1 expression levels in single neurons are
considerably lower than in the striatum (mPFC layer 5 pyra-
midal neurons: w4/100,000 transcripts; striatum: w110/
100,000) [data from DropViz (66)]. We found that bath appli-
cation of Drd1 agonist SKF 81297 (1 mM) promotes glutamate-
evoked spinogenesis in mPFC pyramidal neurons (Figure 3A,
B). This effect requires Drd1 signaling, given that Drd1 condi-
tional knockout abolished the enhancement of spinogenesis.
Suppression of PKA activity by either bath application of H-89
(10 mM) or overexpression of endogenous PKA inhibitor (PKIa)
chiatry June 1, 2021; 89:1096–1105 www.sobp.org/journal 1099
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Figure 2. KET rescues mPFC plasticity after stressful experience through dopmanine Drd1 receptor (Drd1). (A) Schematic illustrating glutamate-evoked spinogenesis
assay in baseline, LH, and LH1 KET conditions. (B) Summary data showing the percentage of failures to escape an escapable aversive shock, one-way ANOVA, F2,18 =
20.26, p, .0001, Sidak’s multiple comparison test, baseline vs. LH, p, .0001, LH vs. LH1 KET, p = .0041. (C) Probability of glutamate-evoked spinogenesis on deep
layer mPFC neurons in distinct stages of aversive learning (baseline, LH, and LH1 KET). n = 9–12 animals/condition as shown in plots, one-way ANOVA, F2,28 = 7.146,
p = .0031, Sidak’s multiple comparison test, baseline vs. LH, p = .0496, LH vs. LH1 KET, p = .0016. (D) Left: Schematic illustrating dual viral transduction strategy with
sparse genetic manipulation of Drd1 expression in Drd1ff mice. Middle: Fluorescence in situ hybridization image confirming the absence of Drd1a mRNA expression
(purple) in Egfp mRNA-expressing mPFC cells (green) in Drd1ff mice. Inset: Close-up of a single neuron. Scale bar = 50 mm. Right: Quantification of the percentage of
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deep layer mPFC neurons in distinct stages of aversive learning (baseline, LH, LH 1 KET, and LH 1 saline) in WT and Drd1ff mice. Two-way ANOVA, Sidak’s multiple
comparison test, WT vs. Drd1ff, LH 1 KET, p = .0043, baseline, LH and LH 1 saline, p. .90, n = 5 animals. *p, .05, **p , .01, ****p , .0001. Error bars reflect SEM.
ANOVA, analysis of variance; EGFP, enhanced green fluorescent protein; KET, ketamine; LH, learned helplessness; mPFC, medial prefrontal cortex; mRNA, messenger
RNA; ns, nonsignificant; WT, wild-type.
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in mPFC pyramidal neurons blocked changes in spinogenesis
induced by SKF 81297 (Figure 3B, C). In addition, in vivo
pretreatment with ketamine (10 mg/kg, i.p.) occluded the
enhancement of spinogenesis by SKF 81297 (Figure 3D),
supporting the argument that ketamine’s effect on structural
plasticity is mediated by Drd1. Furthermore, the plasticity-
promoting effect of ketamine was blocked by overexpression
of PKIa (Figure 3E). Several established targets of PKA,
involved in cytoskeletal remodeling, could contribute to Drd1-
dependent effects of ketamine on structural plasticity (67)
(Figure 3F). Altogether, our results reveal that ketamine’s rapid
modulation of structural plasticity in mPFC pyramidal neurons
requires the Drd1-PKA signaling cascade.

Bidirectional Manipulation of mPFC DA Release
Controls Behavioral Effects of Ketamine

To connect the mechanisms of ketamine-associated plas-
ticity and its behavioral effects, we examined the role of
cortical DA signaling in escape behavior after LH. To induce
local dopamine release in the mPFC, we optogenetically
1100 Biological Psychiatry June 1, 2021; 89:1096–1105 www.sobp.org
activated DA terminals in the mPFC in animals with
channelrhodopsin-2 expression restricted to VTA DA neu-
rons. DATicre neonates were transduced with AAV1.EF1a.-
DIO.hChR2(H134R).EYFP, or a control fluorophore, and were
implanted with optical fibers 4 to 6 weeks after transduction
(Figure 4A, B). After LH induction, animals received a series
of burst optogenetic stimuli at 20 Hz every 10 seconds (10
pulses, 20-ms pulse width, 500-ms train duration) during the
test session consisting of 30 avoidable foot shocks
(Figure 4C). The stimulation bursts were not timed relative to
shocks and took place on either side of the shuttle box,
decreasing the likelihood of forming conditioned place
preference or aversion. Optogenetic activation of DA axon
terminals in the mPFC significantly decreased the percent-
age of failures after LH as well as that of latencies to escape
(Figure 4D). Optogenetic stimulation did not alter locomotion
behavior in either the open field or the shuttle box, sug-
gesting that the high escape tendency is not caused by
hyperlocomotion (Figure 4E). Thus, enhancing DA release in
the mPFC is sufficient to rescue escapes after LH.
/journal
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While we found that optogenetically driven increase in
mPFC DA tone mimics behavioral effects of ketamine, whether
these effects require local DA release in the mPFC remains
unclear. To achieve local inhibition of DA release, we infused
CNO into the mPFC of mice expressing hM4Di in VTA DA
neurons and their terminals in the mPFC to reduce axonal
release of dopamine (68–70). DATiCre neonates were trans-
duced with AAV1.CBA.DIO.hM4Di.mCherry in the VTA, and
cannulae were implanted bilaterally over the mPFC in order to
locally deliver 1 mM CNO (1 mL for each side) (Figure 4F and
Figure S4A). A high density of hM4Di.mCherry expression in
mPFC terminals was observed in immunoenhanced fixed tis-
sue sections (Figure 4G). Local infusion of CNO into the mPFC
along with ketamine treatment blocked the behavioral effect of
ketamine (10 mg/kg, i.p.) in the LH paradigm, while ketamine
alone was sufficient to rescue escape behavior (Figure 4H and
Figure S4B). To determine whether mPFC DA function is
required to maintain the effect of ketamine on behavior, we
chemogenetically inhibited DA release 24 hours after ketamine
Biological Psy
treatment (Figure S4C). This delayed manipulation had no
significant effect on escape behaviors. Together, these results
suggest that disruption of DA signaling is important for keta-
mine effects during an initial narrow time window following
ketamine administration.

The activation of Drd1s initiates Gas-mediated PKA
signaling cascades, which enhance spinogenesis, synaptic
transmission, and neuronal activity (54,55,59,71). Therefore,
we tested whether selective activation of Gas signaling in
mPFC Drd1-expressing neurons could rescue escape behavior
after aversive learning. We relied on the Gas-coupled rM3D
DREADD (designer receptor exclusively activated by designer
drugs), expressing AAV1.CBA.DIO.rM3Ds.mCherry in Drd1Cre

(FK150) mice (Figure 4I). The expression of rM3Ds alone did
not change baseline escape and failure rates, nor did the
magnitude of aversive learning. After LH induction, a single
i.p. dose of CNO (3 mg/kg) was sufficient to rescue escape
behavior 4 hours after treatment, lasting at least 24 hours
(Figure 4I). Activating Gas signaling in Drd1-expressing
chiatry June 1, 2021; 89:1096–1105 www.sobp.org/journal 1101
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neurons in vivo significantly increased phosphorylation of
CREB (cAMP-response element binding protein), which is
typically induced by Gas-coupled cascades (Figure 4J). In
addition to our results, a recently published study showed that
optogenetic activation of Drd11 mPFC neurons decreases
immobility time in the forced swim test, suggesting that these
Drd1-expressing neurons may broadly regulate aversive or
active coping responses (72). Altogether, our data demonstrate
that mPFC DA signaling mediates both the rapid plasticity-
promoting actions and behavioral effects of ketamine.
DISCUSSION

Glutamate-evoked interrogation of plasticity on genetically
targeted neurons offers unique strengths as a structural plas-
ticity readout. Besides dissociating de novo genesis and
elimination of dendritic spines and synapses, this assay facil-
itates pharmacological and genetic mechanism dissection and
is compatible with behavioral manipulations. Our observations
demonstrate a temporal precedence of spinogenesis increase
relative to changes in dendritic spine density, suggesting that
the changes in spine density in vivo can be due to a prior
accumulating change in glutamatergic activity-dependent
spinogenesis. Recent work demonstrates that newly formed
dendritic spines are required to maintain the behavioral effect
of ketamine after chronic corticosterone administration (19),
establishing a causal link between the increase in new spine
formation and ketamine’s behavioral effects. Here, we have
defined the mechanisms underlying rapid changes in spino-
genesis that are required for these causal effects.

The current study explains several intriguing temporal ob-
servations about ketamine actions and reconciles previously
reported temporal mismatches. First, rapid antidepressant ef-
fects of ketamine usually begin 2 to 4 hours after a single dose
of treatment (2,4,24,73), while changes in dendritic spine
morphology in the mPFC are primarily observed 8 to 16 hours
later (14,16,19,23). Our results reveal that the enhancement of
glutamate-induced spinogenesis occurs rapidly (2–4 hours)
after ketamine treatment, corresponding to its rapid-onset
behavioral effects. Second, the half-life of ketamine is esti-
mated at 1 to 3 hours in humans (w1.5 hours in rodents), with a
relatively short clearance time (w8–12 hours) (74,75). These
short clearance times stand in contrast to the lasting behav-
ioral effects of ketamine in both humans and rodents (.24
hours) (1,2,24). Given this temporal difference, one intriguing
possibility is that the timing of the clinical antidepressant ef-
fects of ketamine in patients with major depressive disorder
(w1 week following a single dose) derives from a lasting
change in DA-dependent structural plasticity caused by keta-
mine. Exactly how new dendritic spines stabilize and
contribute to behavior after ketamine treatment may further
reveal how ketamine’s effects last days beyond its bioavail-
ability. Because our experiments were carried out in young
animals and neural plasticity dynamics are known to change
across age (76–78), the efficacy of ketamine treatment could
vary in clinical populations as a function of age even if
mechanisms of action are conserved. Because DA tone in the
mPFC changes through the life span (79–82), the variance in
ketamine’s antidepressant efficacy [e.g., low efficacy and more
Biological Psy
transient effects for geriatric depression (83)] may be partially
explained by the age-related alterations in cortical DA tone.

This work ties into a growing body of literature explicitly and
implicitly linking ketamine, behavior, and plasticity. A recent
study concluded that Drd1-positive neurons in the mPFC
regulate depressive-like behavior (72), and our study investi-
gated the underlying neuromodulatory and plasticity mecha-
nisms consistent with this discovery. Together, the two studies
support the idea that ketamine controls mPFC plasticity and
behaviors through cortical modulation by DA. Another recent
study demonstrated that newly formed dendritic spines are
required to maintain the behavioral effect of ketamine after
chronic corticosterone administration (19), establishing a
causal link between the increase in new spine formation and
ketamine’s behavioral effects. These findings, together with
our observations of correlated spinogenesis and escape
behavior after LH, highlight the importance of new dendritic
spine formation for behavioral regulation. Future experiments
are required to fully understand the impact of individual vari-
ability in plasticity and neuromodulatory signaling on the an-
tidepressant effects of ketamine.

Our observation that DA signaling mediates dendritic spine
plasticity in the mPFC after ketamine injection may reflect
broadly conserved mechanisms in the brain, where DA controls
activity-induced plasticity of dendritic spines and excitatory
synapse formation. Prior data demonstrate that during devel-
opment, DA regulates the formation of dendritic spines and
excitatory synapses in striatal direct pathway spiny projection
neurons expressing Drd1s (55,65). The activation of Drd1s
stimulates Gas signaling cascades, increasing cAMP production
and PKA activity. Analogously, DA promotes glutamate-evoked
spinogenesis on mPFC pyramidal neurons through Drd1 acti-
vation and changes in PKA activity. Given that actin dynamics
are important for dendritic spine formation and shape regulation
(84), the mechanistic link between Drd1-PKA signaling and
dendritic spine formation likely involves cytoskeleton remodeling
proteins. Indeed, PKA modulates the activity of small GTPases
(e.g., Rap1, Rac1, Cdc42) known to regulate dendritic spines (67)
through guanine nucleotide exchange factors and GTPase-
activating proteins (85,86). Specific molecular effectors respon-
sible for ketamine-induced changes in synaptic and dendritic
spine plasticity remain to be elucidated and may provide new
clinical targets.
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